
The 5th Romanian Master of Mathematics Competition

Solutions of the problems

Problem 1 = 4′. Prove that there are infinitely many positive integer numbers n such that
22

n+1 + 1 be divisible by n, but 2n + 1 be not.

(Russia) Valery Senderov

Solution 1. Throughout the solution n stands for a positive integer. By Euler’s theorem,
(23

n
+ 1)(23

n − 1) = 22·3
n − 1 ≡ 0 (mod 3n+1). Since 23

n − 1 ≡ 1 (mod 3), it follows that 23
n
+ 1

is divisible by 3n+1.
The number (23

n+1
+ 1)/(23

n
+ 1) = 22·3

n − 23
n
+ 1 is greater than 3 and congruent to 3

modulo 9, so it has a prime factor pn > 3 that does not divide 23
n
+1 (otherwise, 23

n ≡ −1 (mod
pn), so 22·3

n − 23
n
+ 1 ≡ 3 (mod pn), contradicting the fact that pn is a factor greater than 3 of

22·3
n − 23

n
+ 1).

We now show that an = 3npn satisfies the conditions in the statement. Since 2an + 1 ≡
23

n
+ 1 ̸≡ 0 (mod pn), it follows that an does not divide 2an + 1.
On the other hand, 3n+1 divides 23

n
+1 which in turn divides 2an +1, so 23

n+1
+1 divides

22
an+1 + 1. Finally, both 3n and pn divide 23

n+1
+ 1, so an divides 22

an+1 + 1.
As n runs through the positive integers, the an are clearly pairwise distinct and the con-

clusion follows.

Solution 2. (Géza Kós) We show that the numbers an = (23
n
+ 1)/9, n ≥ 2, satisfy the

conditions in the statement. To this end, recall the following well-known facts:

(1) If N is an odd positive integer, then ν3(2
N + 1) = ν3(N) + 1, where ν3(a) is the exponent

of 3 in the decomposition of the integer a into prime factors; and

(2) If M and N are odd positive integers, then (2M + 1, 2N + 1) = 2(M,N) + 1, where (a, b) is
the greatest common divisor of the integers a and b.

By (1), an = 3n−1m, where m is an odd positive integer not divisible by 3, and by (2),

(m, 2an + 1)
∣∣ (23n + 1, 2an + 1) = 2(3

n,an) + 1 = 23
n−1

+ 1 <
23

n
+ 1

3n+1
= m,

so m cannot divide 2an + 1.
On the other hand, 3n−1

∣∣ 22an+1 + 1, for ν3(2
2an+1 + 1) > ν3(2

an + 1) > ν3(an) = n − 1,
and m

∣∣ 22an+1+1, for 3n−1
∣∣ an, so 3n

∣∣ 2an +1 whence m
∣∣ 23n +1

∣∣ 22an+1+1. Since 3n−1 and
m are coprime, the conclusion follows.

Remarks. There are several variations of these solutions. For instance, let b1 = 3 and bn+1 =
2bn + 1, n ≥ 1, and notice that bn divides bn+1. It can be shown that there are infinitely many
indices n such that some prime factor pn of bn+1 does not divide bn. One checks that for these
n’s the an = pnbn−1 satisfy the required conditions.

Finally, the numbers 3n · 571, n ≥ 2, form yet another infinite set of positive integers
fulfilling the conditions in the statement — the details are omitted.
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Problem 2 = 5′. Given a positive integer number n ≥ 3, colour each cell of an n × n square
array one of [(n + 2)2/3] colours, each colour being used at least once. Prove that the cells of
some 1× 3 or 3× 1 rectangular subarray have pairwise distinct colours.

(Russia) Ilya Bogdanov, Grigory Chelnokov, Dmitry Khramtsov

Solution. For more convenience, say that a subarray of the n× n square array bears a colour if
at least two of its cells share that colour.

We shall prove that the number of 1×3 and 3×1 rectangular subarrays, which is 2n(n−2),
exceeds the number of such subarrays, each of which bears some colour. The key ingredient is
the estimate in the lemma below.

Lemma. If a colour is used exactly p times, then the number of 1 × 3 and 3 × 1 rectangular
subarrays bearing that colour does not exceed 3(p− 1).

Assume the lemma for the moment, let N = [(n+ 2)2/3] and let ni be the number of cells
coloured the ith colour, i = 1, . . . , N , to deduce that the number of 1× 3 and 3× 1 rectangular
subarrays, each of which bears some colour, is at most

N∑
i=1

3(ni − 1) = 3

N∑
i=1

ni − 3N = 3n2 − 3N < 3n2 − (n2 + 4n) = 2n(n− 2)

and thereby conclude the proof.

Back to the lemma, the assertion is clear if p = 1, so let p > 1.
We begin by showing that if a row contains exactly q cells coloured C, then the number r

of 3× 1 rectangular subarrays bearing C does not exceed 3q/2− 1; of course, a similar estimate
holds for a column. To this end, notice first that the case q = 1 is trivial, so we assume that
q > 1. Consider the incidence of a cell c coloured C and a 3×1 rectangular subarray R bearing C:

⟨c,R⟩ =
{

1 if c ⊂ R,
0 otherwise.

Notice that, given R,
∑

c⟨c,R⟩ ≥ 2, and, given c,
∑

R⟨c,R⟩ ≤ 3; moreover, if c is the leftmost or
rightmost cell, then

∑
R⟨c,R⟩ ≤ 2. Consequently,

2r ≤
∑
R

∑
c

⟨c,R⟩ =
∑
c

∑
R

⟨c,R⟩ ≤ 2 + 3(q − 2) + 2 = 3q − 2,

whence the conclusion.
Finally, let the p cells coloured C lie on k rows and ℓ columns and notice that k + ℓ ≥ 3,

for p > 1. By the preceding, the total number of 3× 1 rectangular subarrays bearing C does not
exceed 3p/2− k, and the total number of 1× 3 rectangular subarrays bearing C does not exceed
3p/2− ℓ, so the total number of 1× 3 and 3× 1 rectangular subarrays bearing C does not exceed
(3p/2− k) + (3p/2− ℓ) = 3p− (k + ℓ) ≤ 3p− 3 = 3(p− 1). This completes the proof.

Remarks. In terms of the total number of cells, the number N = [(n + 2)2/3] of colours
is asymptotically close to the minimum number of colours required for some 1 × 3 or 3 × 1
rectangular subarray to have all cells of pairwise distinct colours, whatever the colouring. To see
this, colour the cells with the coordinates (i, j), where i+j ≡ 0 (mod 3) and i, j ∈ {0, 1, . . . , n−1},
one colour each, and use one additional colour C to colour the remaining cells. Then each 1× 3
and each 3× 1 rectangular subarray has exactly two cells coloured C, and the number of colours
is ⌈n2/3⌉ + 1 if n ≡ 1 or 2 (mod 3), and ⌈n2/3⌉ if n ≡ 0 (mod 3). Consequently, the minimum
number of colours is n2/3 +O(n).
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Problem 3 = 3′. Each positive integer number is coloured red or blue. A function f from the
set of positive integer numbers into itself has the following two properties:

(a) if x ≤ y, then f(x) ≤ f(y); and

(b) if x, y and z are all (not necessarily distinct) positive integer numbers of the same colour
and x+ y = z, then f(x) + f(y) = f(z).

Prove that there exists a positive number a such that f(x) ≤ ax for all positive integer numbers x.

(United Kingdom) Ben Elliott

Solution. For integer x, y, by a segment [x, y] we always mean the set of all integers t such that
x ≤ t ≤ y; the length of this segment is y − x.

If for every two positive integers x, y sharing the same colour we have f(x)/x = f(y)/y,
then one can choose a = max{f(r)/r, f(b)/b}, where r and b are arbitrary red and blue numbers,
respectively. So we can assume that there are two red numbers x, y such that f(x)/x ̸= f(y)/y.

Set m = xy. Then each segment of length m contains a blue number. Indeed, assume that
all the numbers on the segment [k, k +m] are red. Then

f(k +m) = f(k + xy) = f(k + x(y − 1)) + f(x) = · · · = f(k) + yf(x),

f(k +m) = f(k + xy) = f(k + (x− 1)y) + f(y) = · · · = f(k) + xf(y),

so yf(x) = xf(y) — a contradiction. Now we consider two cases.

Case 1. Assume that there exists a segment [k, k + m] of length m consisting of blue
numbers. Define D = max{f(k), . . . , f(k +m)}. We claim that f(z) − f(z − 1) ≤ D, whatever
z > k, and the conclusion follows. Consider the largest blue number b1 not exceeding z, so
z − b1 ≤ m, and some blue number b2 on the segment [b1 + k, b1 + k + m], so b2 > z. Write
f(b2) = f(b1) + f(b2 − b1) ≤ f(b1) +D to deduce that f(z + 1) − f(z) ≤ f(b2) − f(b1) ≤ D, as
claimed.

Case 2. Each segment of length m contains numbers of both colours. Fix any red number
R ≥ 2m such that R + 1 is blue and set D = max{f(R), f(R + 1)}. Now we claim that
f(z + 1)− f(z) ≤ D, whatever z > 2m. Consider the largest red number r not exceeding z and
the largest blue number b smaller than r ; then 0 < z − b = (z − r) + (r − b) ≤ 2m, and b+ 1 is
red. Let t = b + R + 1; then t > z. If t is blue, then f(t) = f(b) + f(R + 1) ≤ f(b) + D, and
f(z + 1) − f(z) ≤ f(t) − f(b) ≤ D. Otherwise, f(t) = f(b + 1) + f(R) ≤ f(b + 1) + D, hence
f(z + 1)− f(z) ≤ f(t)− f(b+ 1) ≤ D, as claimed.
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Problem 4 = 1′. Given a finite group of boys and girls, a covering set of boys is a set of boys
such that every girl knows at least one boy in that set; and a covering set of girls is a set of girls
such that every boy knows at least one girl in that set. Prove that the number of covering sets
of boys and the number of covering sets of girls have the same parity. (Acquaintance is assumed
to be mutual.)

(Poland) Marek Cygan

Solution 1. A set X of boys is separated from a set Y of girls if no boy in X is an acquaintance
of a girl in Y . Similarly, a set Y of girls is separated from a set X of boys if no girl in Y is an
acquaintance of a boy in X. Since acquaintance is assumed mutual, separation is symmetric: X
is separated from Y if and only if Y is separated from X.

This enables doubly counting the number n of ordered pairs (X,Y ) of separated sets X,
of boys, and Y , of girls, and thereby showing that it is congruent modulo 2 to both numbers in
question.

Given a set X of boys, let YX be the largest set of girls separated from X, to deduce that
X is separated from exactly 2|YX | sets of girls. Consequently, n =

∑
X 2|YX | which is clearly

congruent modulo 2 to the number of covering sets of boys.
Mutatis mutandis, the argument applies to show n congruent modulo 2 to the number of

covering sets of girls.

Remark. The argument in this solution translates verbatim in terms of the adjancency matrix
of the associated acquaintance graph.

Solution 2. (Ilya Bogdanov) Let B denote the set of boys, let G denote the set of girls and
induct on |B|+ |G|. The assertion is vacuously true if either set is empty.

Next, fix a boy b, let B′ = B \ {b}, and let G′ be the set of all girls who do not know b.
Notice that:

(1) a covering set of boys in B′ ∪G is still one in B ∪G; and

(2) a covering set of boys in B ∪G which is no longer one in B′ ∪G is precisely the union of a
covering set of boys in B′ ∪G′ and {b},

so the number of covering sets of boys in B ∪G is the sum of those in B′ ∪G and B′ ∪G′.
On the other hand,

(1′) a covering set of girls in B ∪G is still one in B′ ∪G; and

(2′) a covering set of girls in B′ ∪G which is no longer one in B ∪G is precisely a covering set
of girls in B′ ∪G′,

so the number of covering sets of girls in B ∪G is the difference of those in B′ ∪G and B′ ∪G′.
Since the assertion is true for both B′ ∪ G and B′ ∪ G′ by the induction hypothesis, the

conclusion follows.

Solution 3. (Géza Kós) Let B and G denote the sets of boys and girls, respectively. For every
pair (b, g) ∈ B × G, write f(b, g) = 0 if they know each other, and f(b, g) = 1 otherwise. A set
X of boys is covering if and only if

∏
g∈G

(
1−

∏
b∈X

f(b, g)

)
= 1.
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Hence the number of covering sets of boys is

∑
X⊆B

∏
g∈G

(
1−

∏
b∈X

f(b, g)

)
≡
∑
X⊆B

∏
g∈G

(
1 +

∏
b∈X

f(b, g)

)
=
∑
X⊆B

∑
Y⊆G

∏
b∈X

∏
g∈Y

f(b, g) (mod 2).

By symmetry, the same is valid for the number of covering sets of girls.
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Problem 6 = 6′. Let ABC be a triangle and let I and O respectively denote its incentre and
circumcentre. Let ωA be the circle through B and C and tangent to the incircle of the triangle
ABC; the circles ωB and ωC are defined similarly. The circles ωB and ωC through A meet again
at A′; the points B′ and C ′ are defined similarly. Prove that the lines AA′, BB′ and CC ′ are
concurrent at a point on the line IO.

(Russia) Fedor Ivlev

Solution. Let γ be the incircle of the triangle ABC and let A1, B1, C1 be its contact points
with the sides BC, CA, AB, respectively. Let further XA be the point of contact of the circles
γ and ωA. The latter circle is the image of the former under a homothety centred at XA. This
homothety sends A1 to a point MA on ωA such that the tangent to ωA at MA is parallel to BC.
Consequently, MA is the midpoint of the arc BC of ωA not containing XA. It follows that the
angles MAXAB and MABC are congruent, so the triangles MABA1 and MAXAB are similar:
MAB/MAXA = MAA1/MAB. Rewrite the latter MAB

2 = MAA1 · MAXA to deduce that MA

lies on the radical axis ℓB of B and γ. Similarly, MA lies on the radical axis ℓC of C and γ.
Define the points XB, XC , MB, MC and the line ℓA in a similar way and notice that

the lines ℓA, ℓB, ℓC support the sides of the triangle MAMBMC . The lines ℓA and B1C1 are
both perpendicular to AI, so they are parallel. Similarly, the lines ℓB and ℓC are parallel to
C1A1 and A1B1, respectively. Consequently, the triangle MAMBMC is the image of the triangle
A1B1C1 under a homothety Θ. LetK be the centre of Θ and let k = MAK/A1K = MBK/B1K =
MCK/C1K be the similitude ratio. Notice that the linesMAA1, MBB1 andMCC1 are concurrent
at K.

Since the points A1, B1, XA, XB are concyclic, A1K ·KXA = B1K ·KXB. Multiply both
sides by k to get MAK ·KXA = MBK ·KXB and deduce thereby that K lies on the radical axis
CC ′ of ωA and ωB. Similarly, both lines AA′ and BB′ pass through K.

A

B C
A1

B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1

C1

MA

MB

MC

XA

XBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXB

IOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
K

ℓA

ℓB

ℓC

γ

ωA

Finally, consider the image O′ of I under Θ. It lies on the line through MA parallel to A1I
(and hence perpendicular to BC); since MA is the midpoint of the arc BC, this line must be
MAO. Similarly, O′ lies on the line MBO, so O′ = O. Consequently, the points I, K and O are
collinear.

Remark 1. Many steps in this solution allow different reasonings. For instance, one may
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see that the lines A1XA and B1XB are concurrent at point K on the radical axis CC ′ of the
circles ωA and ωB by applying Newton’s theorem to the quadrilateral XAXBA1B1 (since the
common tangents at XA and XB intersect on CC ′). Then one can conclude that KA1/KB1 =
KMA/KMB, thus obtaining that the triangles MAMBMC and A1B1C1 are homothetical at K
(and therefore K is the radical center of ωA, ωB, and ωC). Finally, considering the inversion
with the pole K and the power equal to KX1 · KMA followed by the reflection at P we see
that the circles ωA, ωB, and ωC are invariant under this transform; next, the image of γ is the
circumcircle of MAMBMC and it is tangent to all the circles ωA, ωB, and ωC , hence its center
is O, and thus O, I, and K are collinear.

Remark 2. Here is an outline of an alternative approach to the first part of the solution.
Let JA be the excentre of the triangle ABC opposite A. The line JAA1 meets γ again at
YA; let ZA and NA be the midpoints of the segments A1YA and JAA1, respectively. Since the
segment IJA is a diameter in the circle BCZA, it follows that BA1 · CA1 = ZAA1 · JAA1, so
BA1 · CA1 = NAA1 · YAA1. Consequently, the points B, C, NA and YA lie on some circle ω′

A.
It is well known that NA lies on the perpendicular bisector of the segment BC, so the

tangents to ω′
A and γ at NA and A1 are parallel. It follows that the tangents to these circles at

YA coincide, so ω′
A is in fact ωA, whence XA = YA and MA = NA. It is also well known that the

midpoint SA of the segment IJA lies both on the circumcircle ABC and on the perpendicular
bisector of BC. Since SAMA is a midline in the triangle A1IJA, it follows that SAMA = r/2,
where r is the radius of γ (the inradius of the triangle ABC). Consequently, each of the points
MA, MB and MC is at distance R + r/2 from O (here R is the circumradius). Now proceed as
above.

A

B C
A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1

C1

NA = MA

MB

MC

YA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XAYA = XA

XBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXBXB

I

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

JA

SASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASA

ZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZAZA

γ

ωA
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Problem 2′. Given a triangle ABC, let D, E, and F respectively denote the midpoints of the
sides BC, CA, and AB. The circle BCF and the line BE meet again at P , and the circle ABE
and the line AD meet again at Q. Finally, the lines DP and FQ meet at R. Prove that the
centroid G of the triangle ABC lies on the circle PQR.

(United Kingdom) David Monk

Solution 1. We will use the following lemma.
Lemma. Let AD be a median in triangle ABC. Then cot∠BAD = 2 cotA + cotB and

cot∠ADC = 1
2(cotB − cotC).

Proof. Let CC1 and DD1 be the perpendiculars from C and D to AB. Using the signed
lengths we write

cotBAD =
AD1

DD1
=

(AC1 +AB)/2

CC1/2
=

CC1 cotA+ CC1(cotA+ cotB)

CC1
= 2 cotA+ cotB.

Similarly, denoting by A1 the projection of A onto BC, we get

cotADC =
DA1

AA1
=

BC/2−A1C

AA1
=

(AA1 cotB +AA1 cotC)/2−AA1 cotC

AA1
=

cotB − cotC

2
.

The Lemma is proved.

Turning to the solution, by the Lemma we get

cot∠BPD = 2 cot∠BPC + cot∠PBC = 2 cot∠BFC + cot∠PBC (from circle BFPC)

= 2 · 1
2
(cotA− cotB) + 2 cotB + cotC = cotA+ cotB + cotC.

Similarly, cot∠GQF = cotA+ cotB + cotC, so ∠GPR = ∠GQF and GPRQ is cyclic.

Remark. The angle ∠GPR = ∠GQF is the Brocard angle.

Solution 2. (Ilya Bogdanov and Marian Andronache) We also prove that ∠(RP,PG) = ∠(RQ,QG),
or ∠(DP,PG) = ∠(FQ,QG).

Let S be the point on ray GD such that AG · GS = CG · GF (so the points A, S, C, F
are concyclic). Then GP · GE = GP · 1

2GB = 1
2CG · GF = 1

2AG · GS = GD · GS, hence the
points E, P , D, S are also concyclic, and ∠(DP,PG) = ∠(GS, SE). The problem may therefore
be rephrased as follows:

Given a triangle ABC, let D, E and F respectively denote the midpoints of the sides BC, CA
and AB. The circle ABE, respectively, ACF , and the line AD meet again at Q, respectively, S.
Prove that ∠AQF = ∠ASE (and ES = FQ).

A

B C

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEF

G

P

QR

S
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Upon inversion of pole A, the problem reads:

Given a triangle AE′F ′, let the symmedian from A meet the medians from E′ and F ′ at K = Q′

and L = S′, respectively. Prove that the angles AE′L and AF ′K are congruent.

A

X

YKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

MN

V

To prove this, denote E′ = X, F ′ = Y . Let the symmedian from A meet the side XY at
V and let the lines XL and Y K meet the sides AY and AX at M and N , respectively. Since
the points K and L lie on the medians, we have VM ∥ AX, V N ∥ AY . Hence AMVN is
a parallelogram, the symmedian AV of triangle AXY supports the median of triangle AMN ,
which implies that the triangles AMN and AXY are similar. Hence the points M , N , X, Y are
concyclic, and ∠AXM = ∠AY N , QED.

Remark 1. We know that the points X, Y , M , N are concyclic. Invert back from A and
consider the circles AFQ and AES : the former meets AC again at M ′ and the latter meets AB
again at N ′. Then the points E, F , M ′, N ′ are concyclic.

Remark 2. The inversion at pole A also allows one to show that ∠AQF is the Brocard angle,
thus providing one more solution. In our notation, it is equivalent to the fact that the points Y ,
K, and Z are collinear, where Z is the Brocard point (so ∠ZAX = ∠ZY A = ∠ZXY ). This is
valid because the lines AV , XK, and Y Z are the radical axes of the following circles: (i) passing
through X and tangent to AY at A; (ii) passing through Y and tangent to AX at A; and (iii)
passing through X and tangent to AY at Y . The point K is the radical center of these three
circles.

Solution 3. (Ilya Bogdanov) Again, we will prove that ∠(DP,PG) = ∠(FQ,QG). Mark a point
T on the ray GF such that GF ·GT = GQ ·GD; then the points F , Q, D, T are concyclic, and
∠(FQ,QG) = ∠(TG, TD) = ∠(TC, TD).

A

B C

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEF

G

P

Q

T

P ′

K
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Shift the point P by the vector
−−→
BD to obtain point P ′. Then ∠(DP,PG) = ∠(CP ′, P ′D),

and we need to prove that ∠(CP ′, P ′D) = ∠(CT, TD). This is precisely the condition that the
points T , D, C, P ′ be concyclic.

Denote GE = x, GF = y. Then GP · GB = GC · GF , so GP = y2/x. On the other
hand, GB ·GE = GQ ·GA = 2GQ ·GD = 2GT ·GF , so GT = x2/y. Denote by K the point of
intersection of DP ′ and CT ; we need to prove that TK ·KC = DK ·KP ′.

Now, DP ′ = BP = BG+GP = 2x+y2/x, CT = CG+GT = 2y+x2/y, DK = BG/2 = x,
CK = CG/2 = y. Hence the desired equality reads x(x+ y2/x) = y(y + x2/y) which is obvious.

Remark. The points B, T , E, and C are concyclic, hence the point T is also of the same
kind as P and Q.
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