Algebra. TST preparation

1. Let \mathbb{R}^{+}denote the set of positive real numbers. Find all functions f : $\mathbb{R}^{+} \mapsto \mathbb{R}^{+}$which satisfy the equation:

$$
f(x) f(y)=2 f(x+y f(x))
$$

for all $x, y \in \mathbb{R}^{+}$.
2. Find all the functions $f: \mathbb{R} \mapsto \mathbb{R}$ such that

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1
$$

for all $x, y \in \mathbb{R}$
3. Determine all pairs of functions (f, g) from the set of real numbers to itself that satisfy:

$$
g(f(x+y))=f(x)+(2 x+y) g(y)
$$

for all $x, y \in \mathbb{R}$
4. Let \mathbb{Q}^{+}be the set of positive rational numbers. Construct a function $f: \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$such that

$$
f(x f(y))=\frac{f(x)}{y}
$$

for all $x, y \in \mathbb{Q}^{+}$
5. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(x^{2}+f(y)\right)=y+(f(x))^{2}
$$

for all $x, y \in \mathbb{R}$
6. Let f and g be two functions from the set of positive integers to itself. Suppose that the equations $f(g(n))=f(n)+1$ and $g(f(n))=g(n)+1$ hold for all positive integers. Prove that $f(n)=g(n)$ for any positive integer n.
7. Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are real numbers which satisfy the inequality

$$
\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}-1\right)\left(b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}-1\right)>\left(a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}-1\right)^{2} .
$$

Prove that $a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}>1$ and $b_{1}^{2}+b_{2}^{2}+\cdots+b_{n}^{2}>1$.
8. Let x, y and z be positive real numbers with $x y z=1$. Prove that the following inequality holds:

$$
\sqrt[3]{\frac{x+y}{2 z}}+\sqrt[3]{\frac{x+z}{2 y}}+\sqrt[3]{\frac{z+y}{2 x}} \leq \frac{5(x+y+z)+9}{8}
$$

9. Let x_{1}, \ldots, x_{100} be nonnegative real numbers such that $x_{i}+x_{i+1}+x_{i+2} \leq 1$ for all $i=1, \ldots, 100$ (we put $x_{101}=x_{1}, x_{102}=x_{2}$.). Find the maximal possible value of the sum $S=\sum_{i=1}^{100} x_{i} x_{i+2}$.
10. Prove that in any set of 2000 distinct real numbers there exist two pairs $a>b$ and $c>d$ with $a \neq c$ or $b \neq d$, such that

$$
\left|\frac{a-b}{c-d}-1\right|<\frac{1}{100000} .
$$

11. Let n be a positive integer and $x_{1}, x_{2}, \ldots, x_{n}$ be some fixed positive reals. Prove that there exist numbers $a_{1}, a_{2}, \ldots, a_{n} \in\{-1,1\}$ such that the following inequality holds:

$$
a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{n}^{2} \geq\left(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}\right)^{2}
$$

12. Let $x_{1}, x_{2}, \ldots, x_{n}$ be real numbers satisfying the conditions:

$$
\left\{\begin{array}{cl}
\left|x_{1}+x_{2}+\cdots+x_{n}\right| & =1 \\
\left|x_{i}\right| & \leq \frac{n+1}{2} \quad \text { for } i=1,2, \ldots, n .
\end{array}\right.
$$

Show that one can find a permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that

$$
\left|y_{1}+2 y_{2}+\cdots+n y_{n}\right| \leq \frac{n+1}{2} .
$$

13. Consider a sequence $a_{1}, a_{2}, \cdots, a_{n}$ of positive integers. Put $a_{n+i}=a_{i}$ for all $i \geq 1$. If

$$
a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq a_{1}+n
$$

and

$$
a_{a_{i}} \leq n+i-1 \quad \text { for } \quad i=1,2, \cdots, n \text {, }
$$

prove that

$$
a_{1}+\cdots+a_{n} \leq n^{2} .
$$

14. Let a_{1}, a_{2}, \ldots be an infinite sequence of positive real numbers for which there exists a real number c with $0 \leq a_{i} \leq c$. Suppose that

$$
\left|a_{i}-a_{j}\right| \geq \frac{1}{i+j} \quad \text { for all } i, j \text { with } i \neq j .
$$

Prove that $c \geq 1$
15. Assume that a sequence of positive real numbers a_{1}, a_{2}, \ldots satisfies the relation $a_{n}=\left|a_{n+1}-a_{n+2}\right|$ for all $n \geq 0$, and $a_{0} \neq a_{1}$. Can this sequence be bounded?
16. Suppose that $s_{1}, s_{2}, s_{3}, \ldots$ is a strictly increasing sequence of positive integers such that the subsequences

$$
s_{s_{1}}, s_{s_{2}}, s_{s_{3}}, \ldots \quad \text { and } \quad s_{s_{1}+1}, s_{s_{2}+1}, s_{s_{3}+1}, \ldots
$$

are both arithmetic progressions. Prove that the sequence $s_{1}, s_{2}, s_{3}, \ldots$ is itself an arithmetic progression.
17. Two sequences of integers $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$, satisfy the equation

$$
\left(a_{n}-a_{n-1}\right)\left(a_{n}-a_{n-2}\right)+\left(b_{n}-b_{n-1}\right)\left(b_{n}-b_{n-2}\right)=0
$$

for each integer greater than 2. Prove that there exists a positive integer k such that $a_{k}=a_{k+2016}$
18. Suppose that α is a root of a polynomial with integral coefficients. Show that there exist two constants $C>0$ and $k \in \mathbb{N}$ such that for any rational number $\frac{p}{q}$ the inequality $\left|\alpha-\frac{p}{q}\right|>\frac{C}{q^{k}}$ holds.

