Algebra. TST preparation

1. Let \mathbb{R}^+ denote the set of positive real numbers. Find all functions $f : \mathbb{R}^+ \mapsto \mathbb{R}^+$ which satisfy the equation:

$$f(x)f(y) = 2f(x + yf(x))$$

for all $x, y \in \mathbb{R}^+$.

2. Find all the functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1$$

for all $x, y \in \mathbb{R}$

3. Determine all pairs of functions (f, g) from the set of real numbers to itself that satisfy:

$$g(f(x+y)) = f(x) + (2x+y)g(y)$$

for all $x, y \in \mathbb{R}$

4. Let \mathbb{Q}^+ be the set of positive rational numbers. Construct a function $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ such that

$$f(xf(y)) = \frac{f(x)}{y}$$

for all $x, y \in \mathbb{Q}^+$

5. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(x^{2} + f(y)) = y + (f(x))^{2}.$$

for all $x, y \in \mathbb{R}$

- 6. Let f and g be two functions from the set of positive integers to itself. Suppose that the equations f(g(n)) = f(n) + 1 and g(f(n)) = g(n) + 1hold for all positive integers. Prove that f(n) = g(n) for any positive integer n.
- 7. Suppose that a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n are real numbers which satisfy the inequality

$$(a_1^2 + a_2^2 + \dots + a_n^2 - 1)(b_1^2 + b_2^2 + \dots + b_n^2 - 1) > (a_1b_1 + a_2b_2 + \dots + a_nb_n - 1)^2.$$

Prove that $a_1^2 + a_2^2 + \dots + a_n^2 > 1$ and $b_1^2 + b_2^2 + \dots + b_n^2 > 1.$

8. Let x, y and z be positive real numbers with xyz = 1. Prove that the following inequality holds:

$$\sqrt[3]{\frac{x+y}{2z}} + \sqrt[3]{\frac{x+z}{2y}} + \sqrt[3]{\frac{z+y}{2x}} \le \frac{5(x+y+z)+9}{8}$$

- 9. Let x_1, \ldots, x_{100} be nonnegative real numbers such that $x_i + x_{i+1} + x_{i+2} \le 1$ for all $i = 1, \ldots, 100$ (we put $x_{101} = x_1, x_{102} = x_2$.). Find the maximal possible value of the sum $S = \sum_{i=1}^{100} x_i x_{i+2}$.
- 10. Prove that in any set of 2000 distinct real numbers there exist two pairs a > b and c > d with $a \neq c$ or $b \neq d$, such that

$$\left|\frac{a-b}{c-d}-1\right| < \frac{1}{100000}.$$

11. Let n be a positive integer and x_1, x_2, \ldots, x_n be some fixed positive reals. Prove that there exist numbers $a_1, a_2, \ldots, a_n \in \{-1, 1\}$ such that the following inequality holds:

$$a_1x_1^2 + a_2x_2^2 + \dots + a_nx_n^2 \ge (a_1x_1 + a_2x_2 + \dots + a_nx_n)^2$$

12. Let x_1, x_2, \ldots, x_n be real numbers satisfying the conditions:

$$\begin{cases} |x_1 + x_2 + \dots + x_n| = 1 \\ |x_i| \leq \frac{n+1}{2} & \text{for } i = 1, 2, \dots, n. \end{cases}$$

Show that one can find a permutation y_1, y_2, \ldots, y_n of x_1, x_2, \ldots, x_n such that

$$|y_1 + 2y_2 + \dots + ny_n| \le \frac{n+1}{2}$$

13. Consider a sequence a_1, a_2, \cdots, a_n of positive integers. Put $a_{n+i} = a_i$ for all $i \ge 1$. If

 $a_1 \le a_2 \le \dots \le a_n \le a_1 + n$

and

$$a_{a_i} \leq n + i - 1$$
 for $i = 1, 2, \cdots, n$,

prove that

 $a_1 + \dots + a_n \le n^2.$

14. Let a_1, a_2, \ldots be an infinite sequence of positive real numbers for which there exists a real number c with $0 \le a_i \le c$. Suppose that

$$|a_i - a_j| \ge \frac{1}{i+j}$$
 for all i, j with $i \ne j$.

Prove that $c \geq 1$

- 15. Assume that a sequence of positive real numbers a_1, a_2, \ldots satisfies the relation $a_n = |a_{n+1} a_{n+2}|$ for all $n \ge 0$, and $a_0 \ne a_1$. Can this sequence be bounded?
- 16. Suppose that s_1, s_2, s_3, \ldots is a strictly increasing sequence of positive integers such that the subsequences

 $s_{s_1}, s_{s_2}, s_{s_3}, \ldots$ and $s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \ldots$

are both arithmetic progressions. Prove that the sequence s_1, s_2, s_3, \ldots is itself an arithmetic progression.

17. Two sequences of integers a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots , satisfy the equation

 $(a_n - a_{n-1})(a_n - a_{n-2}) + (b_n - b_{n-1})(b_n - b_{n-2}) = 0$

for each integer greater than 2. Prove that there exists a positive integer k such that $a_k = a_{k+2016}$

18. Suppose that α is a root of a polynomial with integral coefficients. Show that there exist two constants C > 0 and $k \in \mathbb{N}$ such that for any rational number $\frac{p}{q}$ the inequality $|\alpha - \frac{p}{q}| > \frac{C}{q^k}$ holds.